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Calculations of the rates of the cooling reactions
n+n-n+p+ e + ;; and n+ g —=n + e + ;; are preéented; the
rates of the closely related muon-producing reactiqns ard the four
inverse processes are also glven. Several different arguments are used
to obtain estimates of the relevant matrix elements. The nucleons are
assumed to form a nérmal Fermi fluid with a continuous excitatioh spec-
trun. The calculated cooling rates indicate that a neutron star con-
taining quasi-free plons would cool within a few days to a temperature
60 low that the star would be unobservable, The surface of a star that

does not contain quasi-free pions would cool to 107 %k in a few months
6 o

a.énd would reach 4 X 10° K in about 100 years. The calculated cooling

rates strongly indicate that the discrete x-ray sources located in the

direction of the ralactic center are not neutron stars.
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I. INTRODUCT}ON

Meagurements made On recent‘rocket flights above the earth's atmos-
Phere have demonstrated the existence of several discrete sources of
galactic x-rays.l-h Several authors® | have suggested that some of the
observed sources may be hot neutron stars radiating x-rays fram théir
surfaces, while other authors have suggested that the observed x-rays may
be synchrotron radiation from energetic electrons in magnetic fields8 or
bremsstrahlung radiation from hot clouds of electrons and nuclei.e’g

The neutron-star hypothesis is the most specific of the suggested
x-ray producing mechanisms, and it 1is thus the easlest hypothesis to dis-
prove observationally. The most obviocus property of a neutron star, its
small size, has led to observational prooflo that the principal x-ray
source in the Crab nebula is not & neutron star; the results of the recent
occultation experiment indicate that the source in the Crab has a diameter
of the order of one light year. In the present work, we consider in detail
another important property of neutron stars, their fast cooling by neutrino
emission, and find that the calculated cooling rates imply important
restrictions on the observability of neutron stars.

We calculate the rates at which a star loses energy by emitting

neutrinos in the reactions

n+n-n+p+e-+7e ) (1)
D+D = n+p+pu + 7; , (2)
4D = D+e +V, ’ (3)
and R +0 =~ n+p + ;; ) (4)

as well as the inverse processes




n+pP+e = n+n + v, ’
D+DP+Hu = n+0+ v, ,
n+e = n+n + v, ,
and D+p = n+x + v, .

Reactions (1) and (5) were first discussed by Chiu and Salpeter7 and the
corresponding neutrino luminosities have been calculated by several
authors.ll-l3 We have previcusly reported crude estimate513 of the rates
of reactions (4) and (8).

We expect that reactions (1) - (8) should be the dominant means of
neutrino production in neutrom stars. In the Appendix, we consider the
rates of various other neutrino-producing reactions, and conclude that
these prOceéses do not contribute importantly to the neutrino luminosity.

In our calculations of the rates of reactions (1) - (8), we have
assuned that the spectrum of excited states ;vailable to a dense neutron
gas is continuous, Just as it is for a normal Ferml gas. Ginzburg and
Kirzhnitslu have pointed out that the excitation spectrum of the nucleon
gas may not be continuous, but may instead resemble the spectrum of a gms
of superconducting electrons. The existence of superfluidity might

greatly modify the cooling rates of neutron stars, and we expect t0 con-

sider the question of superfluidity of the nucleon gas in a future paper.

Our present treatment of the neutrino-producing reactions and the related

conclusions about the observebility of neutron stars are expected to be
accurate anly if the nucleon gas does not form a superfluid.
Our calculations indicate that reactions (1) and (5) cause a mass

Ms of neutron star matter to lose energy at a rate given by

(5)

(6)

(7)

(8)
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/)3 28, (9)

Lx:n-e = (6 x 10°% erg sec'l)(Ms/Mo)(p 9

nucl

where %D is the mass of the sun, p is the density of nuclear matter

1

nucl
(3.7 x 10 b gn/cc), p is the density of the neutron-star matter, and

Tg is the stellar temperature in units of 109 OK. The neutrino luminosity
due to reactions (2) and (6) 1s equal to F X ngn-e’ where F is equal to
zero when the electron Ferml energy W?(e) is less than m“ce, and 1is
equal to the ratio of the muon Fermi momentum to the electron Fermi
momentum if WF(e) is greater than m“ca. Thus the net energy loss by
reactions (1), (2), (5), and (6) is equal to (1 + F) Len-e.

We f£ind that’the rate of energy loss by neutrinos produced by

reactions (3), (&), (7), and (8) is given approximately by

L6 6

Lcn ~ (10" erg sec-l)(nﬂ/nb)(Ms/Ma) Ty , (10)

where nﬂ/nb is the ratio of the pumber density of quasi-free % mesons
to the number density of baryons. The lumi?osity L:n 18 greater than
Lﬁn-e if nﬂ/nb is greater than about 10_7. As we have shown in Sec. IIT
of the preceding paper, one cannot say with any degree of certainty whether
or not quasi-free pions are present in neutron stars. We confine ourselves
in the present work to consideration of the consequences of the presence

of quasi-free pions in neutron stars, setting aside the much more difficult
problem of whether such pions are actually present.

We combine Egqs. (9) and (10) with the results of the neutron-star
models of Tsurutals (computed using the equations of stellar structure and
various simple laws for the equation of state) to estimate cooling times
of hot neutron stars. A neutron star containing quasi-free pions would

cool 80 fast by neutrino emission that its x-ray luminosity would be



negligible within a few days after the formation of the star. Thus our
cooling rates indicate that the observed x-ray sources cannot be neutron
stars that contain quasi-free pioms.

The surface temperature of a neutron star that 1s cooling by reac-
tions (1) and (5) should reach 10’ °%K within about a year after the

6 o

star's formation and should reach 4 X 100 'K after about one-hundred

years. The flux from a neutron star with a surface temperature of
L x lo6 %% could not be detected above the background flux using current
techniques, unless the star were less than onme kiloparsec from us. Thus
our cooling rates suggest that neutron stars would be oObservable with
present techniques only if they happened to be formed within a small
volume (~ 1 cubic kiloparsec) centered at the sun, or if they happened to
be observed in the process of formation.
About half of the observed x-ray sources are in the direction of
the galactic center; our cooling timés indicate that any observed source
that is actually located near the galactic center (which is about 8
kiloparsecs away) could be a neutron star only if it was formed less than a week
before it was observed, an extremely unlikely possibility. However, it has been
suggested3’16 that the brightest source, the one that appears to be in the
constellation Scorpius, may be of the order of 30 parsecs from the sun.
If the Scorpius source is in fact only 30 parsecs away, the observed flux
from it 1is comsistent with the hypothesis3 that the source is a neutron
star with a surface temperature of about 3 X 106 OK. Our cooling times
indicate that such a star could be thousands of years old. However, a
black body at 3 X>106 Ok would not produce the large numbers of short-

wavelength photons recently observed17 for the Scorpius source.



We begin the detailed discussion of the reaction rates by formula-
ting in Sec., II the general problem of neutrino emission from neutron
stars. Then in Sec, III, we use simple heuristic arguments to obtain
approximate expressions for the rates of reactions (1) and (3). The
problem of neutrino opacity is treated in Sec. IV, where we show that the
mean free paths of all neutrinos involved in reactions (1) to (8) are
large compared to the radius of a neutron star., Section V cgntains a
detailed calculation of the rate of emergy loss by reactiomns (1), (2),
(5), and (6), while Sec. VI contains an analogous treatment of the pion
processes, reactions (3), (4), (7), and (8). Finally, in Sec. VII, we use
information from neutron-star modelsls to calculate the rate of cooling of
the surface of a typical hot neutron star (i.e., the decrease of the x-ray
luminosity with time). We then apply our calculated cooling rates to the

recent observations of Bowyer et g;.s -

II. GENERAL FORMULATION

In order to compute cooling times, one must consider the excited
states of a neutron star. A neutron star 1s almost completely isothermal,
except for an extremely thin atmosphere. For the purposes of calculating
the rate of neutrino emission, one can neglect the atmosphere and imagine
that the excited states of the star are populated (according to the usual
Boltzmann factor) by placing the star in contact with a thermal bath at
a finite temperature T. The star then has a definite baryon number and
total electric charge but does not have a definite energy. The rate of
energy loss (cooling) by neutrino emission is given by an expression of

the form:



. 2 - - -
L = (2x/n) f Bia I(sa, v l’\;’ sa)l E, 8(E; - Eg E,) exp (' EQ/kT) ,

(11)

where Sa’ S, are states of the entire star, Hw is the weak-interaction

B
Hamiltonian, Ev is the energy of the emitted neutrino v, and the swuma-

tion over B is limited to states for which E_ < Ea.

B
In practice, cooling rates must be computed with the help of a
model; we adopt an independent-particle model whose general characteristics
have been discussed in the preceding paper.18 We shall in faect-.use several

slightly different versions of the independent-particie model in order to
estimate the uncertainties in our results. We also approximate the

thermal average (Eq. (11)) over the states of the star by assigning a
Fermi-Dirac or Bose-Einstein distribution function to each kind of particle
in the star. As discussed in paper I, it is not possible to decide at
present whether or not neutron stars contain a significant number of

quasi-free pions; hence our calculations have been carried out for both

assumptions, pions present and pions not present.

ITII. HEURISTIC CALCULATIONS

One can estimate the order of magnitude of the energy loss due to
processes (1) - (8) by a simple heuristic argument that 1s not entirely
fraudulent. The main feature of this argument is that only Fermions on
the edge of their degenerate seas can undergo inelastic scattering. Thus
only a small fraction of the order of (kT/EF) of the Fermions of a
given t}pe can participate in the cooling reactions. 8Since neutrinos
escape from a neutron star (see Section IV) this argument does not apply

t0 them. However, the net amount of energy transferred to a neutrino in

6=



any of the cooling reactions must be, by conservation of energy, of the

order of kT. As & guess, we replace the dimensionless neutrino phase

space, which is proportional to Ev‘?, by (kT)e/[EF(n) EF(p)] for reac-

tions (1) and (2) and similar factors for reactions (3) and (4).

The energy loss from reaction (1) can now be crudely estimated from
the familiar arguments of kinetic theory. One writes for the energy loss
from a volume 1 by reaction (1):

+6
le) ~ 8 n(n)2 (ov) E [E_;‘-}(%‘T] [_E;(k%_] (12)

where n(n) 1s the neutron number density, the weak-interaction cross
section o ~ J.O_l":5 [EF(n)/l MeV]2 cm2, the relative velocity v ~ ¢/3,
the neutrino energy Ev ~ kT/s, sand the various Fermi energles can be
estimated from Eqs. (5) of paper I. We have included in Eq. (12) one
factor of kT/EF for each degenerate fermion that occurs in process (1);
we have also made use of the fact that EF(e) is, according to Sec. II
of paper I, approximately equal to EF(n). We consider a mass MB of
neutron-star matter at & uniform density p and a uniform temperature T.
Using Eq. (5) of paper I in Eq. (12), one finds that the neutrino

luminosity due to reaction (1) is given by

1) R (13)

Li ~ (6 x 1039 erg-sec-l)(Ms/MD)(pnucl/p A

where WD is the mass of the sun and T. is the temperature in billions of

9
degrees, Equation (13) ylelds energy losses that are not enormously

different from the energy losses computed from our more complicated

analysis of Sec. V. Moreover, Eq. (13) gives correctly the crucial



dependence of Lgl) on temperature, although the density dependence
cannot be obtained correctly without a more careful kinematical analysis.

A similar crude argument can be used to obtain an estimate of the
energy losses from reactions (3). Note that process (3) contains two
fewer Fermions than processes (1) and (2); hence the rate of (3) is
faster than (1) by a factor of the order of (EF(n)/kT)g. Thus :

/p)e/s .T6 . (14)

Lis) ~ (4 x lOhs erg-sec-l)(nx/nn)(Ms/wD)(p 3

nucl

The heuristic arguments show clearly what quantities must be calcu-
lated in a careful analysis, namely, the phase-space integrals (which we
have appraximated by factors of kT/EF) and the nuclear matrix elements

(which we have approximated by an average weak-interaction cross sectiom).

IV. NEUTRINO OPACITY

Neutrinos produced by the reactions discussed in the previous
section have typlcal energles of the order of kT, with kT less than or of
the order of 100 keV, For neutrinos of such energles, the largest contrie-
bution to the neutrino-opacity comes from neutrino-electron scattering
for Ve and neutrino-muon scattering for v“. This result can easily be
established by examining the possible reactions. We consider first elec-
tron neutrinos, Var

The following reactions are forbidden for typical neutron-star
conditions by conservation of energy and mowentum: Ve 4+ D =~Dp + e-,

- + - +
ve + P-~n+e , and ve + P+n=n+n+e . The reaction

-

Ve + 0 +n=D+ e +n' and related reactions involving strange

o] -
perticles, e.g., A"'s aor I 's, occur rarely because the cross section

1s Of the order of 102 cm® times several factors of (XT/E,).




Neutrino absorption by heavier elements on the surface of the star is
negligible because the cross sectiomns are small and the heavier elements

are rare, Thus neutrino-electron scattering is the most important inter-

action for ve.

A gimilar analysis has been carried out for muon neutrinos and

shows that the only interactions allowed by the selection rules and by

- —

energy conservation are vp - u and vu

The cross section for neutrino-electron scattering in a degenerate

gas 18,19 for E, << EF(e):

- u- scattering.'

2
g ~ 2X 10'1“‘ (Ev/mece) . (1s)
Equation (15) should be multiplied by one-third for antineutrino-electron

scattering. For Vu - u'
v

by BEq. (15). For w W~ scattering, Eq. (15) should be multiplied by
one -thil‘d .

scattering, the cross section is again given

The mean free path of an electron neutrino is:

v

A = (ane)-l ’ (16a)
e

and therefore:

+2 +2
Ave z a5 xlo (ohucl/p) Km , p< b Phucl  * (16v)

In obtaining Eq. (16b), we have used Eq. (5b) of I. The mean free path of

a muon neutrino is larger than Av
e

since muons are less numerous than

electrons s

Note that the values of the mean free path given by Eqs. (16) are

large compared to the radius of a neutron star (~ 10 Km), Thus the opacity

of & neutrino star to low-energy neutrinos is entirely negligible.

-9-



V. NUCLECN-NUCLEON COOLING
A. General Expressions

We now make explicit use of the independent-particle model to calcu-
late the rate of reaction (1). We describe the state of the entire star
in terms of the states of its individual particles, introducing corrections
to account for the interactions among the various particles. Following the
work of Games et al.,20 we label each single-particle state by its momen-
tum P; as in paper I, the energy assigned to a state of particle species 1

with momentum p is given by

N
Ei(p) - ‘/giz c + p2 c2 + Ui(p) - m, c2 . (17a)

The Fermi energy EF(i) is defined by

EF(i) - ‘/mie c)+ + [Pp(i)]2 ¢ - m, ? s (17v)

where PF(i) is the Fermi momentum for a particle of species 1. The

zero point of Ui(p) is defined such that Ui [PF( i)] is equal to the
binding energy B(i) as defined in Sec. III-B of paper I. Thus, Ei(p)
is the energy required to take a particle of type i from infinity and
place it in the neutrom star in a state with momentum p (gravitational
interactions not considered). The quantities Wi(p) and WF(i) are
defined to be equal, respectively, to [Ei(p) +n, ca:] and
[EF(:L) + oy c2J.

The neutrino luminosity Lgl) arising from reaction (1)

(n+n~xi+p+e-+ve)i.navolumenis:

-10-



(1) -1 3 3 3 3 3 3 -
L,/ =xn z [a'n an,dm'a n,d’n, d°n_ 8 8E; - Ep) BE_

spins v v
_ 2
X l(n,p,e,ve IH‘,[ n:n)l A ) (18a)

vwhere the subscripts 1, 2, 1', p, e, and v denote the two initial neutrons,
the final neutron, the proton, the electron, and the antineutrino,
respectively, We have included a factor of one-half which arises irom the
identity of the two initial neutrons. The density of individual-particle

states can be expressed in terms of the particle momenta as follows:

a’n - (2mm)™> @ p12 dp, an

n, (18p)

1 L
The quantity S is a rroduct of Fermi-Dirac distribution functions for each
particle appearing in reaction (1), except the neutrino; S corrects the
denslty-of -state factors for the effect of the exclusion principle in the

final state and gives the appropriate occupation numbers in the-initial

state. More explicitly,
S = I 5(1) , (18c)
where for the two initial neutroms,

S(n) = {1 + exp [En - EF(n)]/kT}_l , ' (18d)

and for the proton, neutron, and electron appearing in the final state,

<« S(1) = {1 + exp [EF(i) - Ei]/kT}-l . (1ge)

The weak Hamiltonian is:



B, - 22 6 7 o [gp(x) 7q (Cy = €4 75) "'n(")] [V 76 (1 + 79 v, ]+ nee.

(1er)
In order to separate out the center-of -mass motion of the nucleons
in the matrix element (n,p,e,;; fﬂwﬂ n,n), we introduce the following
center~-of -mass and relative coordinates:
K = (}51 + 1,52) ’ (19a)
xk = 2% (k, - k.) (19v)
~ ~l A2 ’
R = 270 (2, +1r.) (19¢)
~ 21 T =2p ’
and L= (3: -52)- ’ (194)

where 51, 52, Ty and T, are, respectively, the wave numbers and positions
of the two nucleons in the initial state. Primed variables will be used
for the analogous final-state quantities. The nucleonic wave functions in

the initial and final states are of the form:

-1

=0 exp (1 K-B) .2 (k5 x) x(8, Mg) (20a)

) -1 [ s [ [ '
and Lo =0 e (LK -R) v (k5 5) (8", Mg") . (200)
In Eqs. (20), the functions V¥ describe the relative motion of the pairs
of nucleons; the incoming part of the asymptotic form of vrslp (5-; 5.) is
the same as the incaming part of a plane wave with wave vector k'. The
function x(38', MS.) describes a two-particle spin-state with total

spin 8' and z-campcment MS"



The nucleon matrix element that appears in Eq. (18a) can now be
Sl

expressed as an integral over the relative wave functiloms vni and vnp'
Before writing down an explicit formula for the matrix element, we make
two simplifications: (1) we assume that the nucleon-nucleon potential
acts only in even-parity states; and (2) we neglect all terms involving
the lepton momenta. The first assumption has frequently been used in
nuclear-matter calculations and does not appear to give rise to any large
errors. The second simplification can be shown to introduce errors of the
order of 15% if the first approximation is valid. One may reasonably
expect the errors in the calculated neutrino luminosity arising from
these approximations to be small compared to the uncertainties that arise
from our lack of a fundamental theory of strong interactions from which
one would hope to calculate the scattering of nucleons in a neutron star.
Making the simplifications described above, we square the matrix
element and sum over all spins, obtaining

= 2
spins ‘(n)P:etve iH‘,l nrn)l

- 8 02 [cva {lee .3 CA2 lMAxa?] (2,‘)3 7\“6 n"5 5(3) (5| - ,}S) ,

) (2la)
where Kx is the Compton wavelength of the pion, and the dimensionless
matrix elements are defined by
=3 3 *0 0
My=A T [a'r Vop(k's £) v (ks x) (21b)
i -3, .3 .w
and My =R " [aT Vpplk's 1) vng(l,g;;) . (21c)



Substituting Eq. (21) in Eq. (18), ve find:
(1) 4 <1, =9, 2 2 2 2
L/ = 6ix @ ¢ n A [cv IMVI +30C, lnAl ] P , (22)

where the dimensionless phase-space factor P is given by the following

equation:
-6 4 15 6 3 (3)
P=0 X -J T a4an SE_ 5 7/(K' -K) 5(E, - E,) . (23)

Since each factor d3gi is proportional to the volume Q, the phase-space
integral P is actually independent of {i. Thus, le) is proportional to Q.
Inserting the appropriate numerical values in the expression for

le) , Oone finds:

4g

o™t le) = (5.2 X 10*8 erg-cn™>-gec™}) P (Ile2 w3 i |®) . (24)

As was apparent from our earlier heuristic discussion, two types of quan-
tities must be calculated, the nuclear matrix elements MA and MV and the
phase-space factor P. Equation (24) has been derived only for the case

of reaction (1); we shall consider in Sec. V-D the modifications necessary

to account for regctions (2), (S), and (6).

B. The Phase-Space Factor

l. General Discussion

Chemical equilibrium among the different types of particles present
in a neutron star is ensured by various weak-interaction processes,
particulafly reactions (1) and (2). The concentrations of the various
particles can be brought to their equilibrium values in typical weak-

) 8

interaction times of the order of 10 = to 10 ~ sec. However, the exclusion

principle greatly inhibits all these reactions when the stellar matter is

~ll -



near chemical equilibrium at low temperature. For example, the lifetime
of a neutron in a npeutron star at equilibrium at 109 %k 1s of the order

+18 to lo+20

of lolzlsec, which 1s 10 times longer than the time required
to establish chemical equilibrium,

This enormous reduction in the reaction rates near equilibrium
results fram a decrease in the number of available initial and final
states. Equation (13) of paper I states that, in a neutron star at
equilibrium at 0°K, two neutrons at the top of their Fermi distributionm
have Just enough energy to produce & neutron, a proton, and an electron at
the top of their respective Fermi seas, plus a zero-energy peutrino, At
temperatures greater than zero but still small compared to the relevant
Fermi energies, neutroms with energies near EF(n) have sufficient energy
to produce a neutron, proton, and electron in unoccupied states near the
tops of their respective Fermi seas, plus a neutrino with an energy 6f the
order of kT, Thus the neutrons destroyed in reaction (1) all ccme from a
narrow band of states with energies within a few KT of EF(n), and the
neutronsg, protons, and electrons produced in reaction (1) must have
energies within a few kT of their respective Fermi energies. The rela-
tively slow rate of reactions (1) and (2) at equilibrium is due to the
fact that only a small fractlon of the total number of particle states can
actually be involved in the reactions. The phase-space factor, P, of
Eq. (23), which we evaluate in the following paragraphs, contains a qpah-
titative description of the inhibition of the reaction rate due to the
small number of available states. The phase-space factors for the allowed
reactions-(l) and (2) are the principal quantities that determine their
absolute rates, just as the ordinary phase-space factor (usually denoted by f)
Primarily determines the laboratory decay rates of superallowed nuclear beta

decays.



2. Initisl Approximations

. The integrations involved in the phase-space factor P can all be
performed analytically; the approximations required for carrying out the
integrations give rise to errors of only a few percent. One can evaluate
the integrals relatively accurately because of the simplifications that
result fram the fact that kT is, for the problems of interest, wmuch less
than the relevant Fermli energies. For example, the energy kT is 0.0856 MeV
at 10° OK, whereas EF(n), EF(e), and EF(P) are, respectively, of the
order of 70 MeV, 70 MeV, and 3 MeV at nuclear density.

The integrand of P is negligible except in the restricted "impor-
tant” region of phase space where all the particle energies are within a
few KT of thelr Fermi energies. It 1s convenient to neglect contributions
to the integral from certain regions that are far from the "important"
region. In particular, we consider only those perts of the region of

integration that satisfy the inequalities

p, + |py -l <Py <p +p,-p, (25)
and Py > Pg ’ (26a)
where , p. = pp + P, + P_ . (26b)

The largest error made in restricting ourselves to the domain
-Bp(p)/kT
2

described by relations (25) and (26) is of the order of e

which is less than 10 for the temperatures and densities of interest.



3. The Angular Integral

We begin the evaluation of the phase-space factor P given in Eq. (23)
by performing the integrations over the solid angles. Let the angular

integral A be defined by the relation

A = Jan [an [an, f an_ Jan, [aay 8%k -K) . (27)

We can rewrite 53(}5' - K) as follows:

83k’ - K) =1 (p]) 2 8%(ny - ng) 8(p] - ) (26)

where q =D + 32 P - fe - P_. The angular delta function 82(01'_ - ﬂq),

~P v

which requires that ﬁhe directions of pi and q be the same, allows one

t0 perform the integration omn ﬂi, immediately. We note that

’ (29)

1/2]

- - R
5(p; - a) = & [pl (8% + p," + 28 p,u)

vhere g = p, - Bp =P - P_ and u 1s the cosine of the angle between B,

14
and 5. Inequality (25) requires that the quantity pi - q be equal to
zero for some value Of u between -1 and +1. Hence the integral over 02
can be carried out immediately, with the result that

a=2m® (pyp)) ™ fan, Jan fan [ao_ & . (30)

1 4

Repeated use of inequality (26) allows one to perform the remaining inte-

grations directly. Ome finds that

A= (40)° 2% (20 p, B : (31)

-17- |



4. The Radial Integral

We now perform the integrations on the lengths of the mamentum
vectars in Eq. (23). Substituting Eq. (31) into Eq. (23) and using

Bq. (1gb), we obtain:

6
2 - ' -1
P-B[ M p“ap, SE_ 5E, - E) (p, », P;) , (32a)
1=l v
where B = 279 4713 (m’(c:)'-15 . (32b)

The integration over the neutrino momentum p_ , which one can
v
perform immediately using the emergy delta function, contributes & factor
(El + E2 - Ei - W, - Ep)3 c-s. Defining the nucleon effective masses as

in paper I, we find that

= o, (p,) aE) (33a)

*
dp, = m (Pn) dE_ e (33b)

The electron energy, Wé, is nearly equal to PoCy since the electrons are
highly relativistic.
It 1s convenient to express P in terms of the following dimension-

less variasbles:

x, = 8[E) - Bln) - B(n)] , | (34a)

x, = -85 ;EF(n) - B(n) | , (34v)

- xg = - [V (o] r (3hc)

x, = 8[E, - E(n) - B(n)] , (34a)

and xg = =8 [E, - Elp) - B(®) ~m +m ] (3ke)



-1
where, as usual, B = (kT) ~.

Substituting Eqs. (33) and (34%) into the expression for P, and

using the equilibrium condition, Eq. (13

) of paper I, we obtain

-4 8 (e s] yh ye @ yp
P-Bc(k’l‘)fdxlfdxafdxsfdxk J dx, J
-0 - -y
“n n -(xl+x2+x3+xu)
(35a)
where
Yp = 8 [Bg(n) + B(n) - £ (p = 0)] , (350)
Yo = B [Wp(e) - m, c2] ’ (35¢)
v, =8 [E(p) + B(p) +m -m -E(p-0)] ,  (3%)
-lA
) 3 5 5 xl)
7 R R VL 121<l+e
3 * _1 * 2 :
" L&l Ty (By)| - mp (Bp) py(Ey) 2o (W) y (35e)

The function ©(y) 1is defined to be equal to unity when y is positive

and zero when y is negative.
x
The factor 6(2‘.i xi) n, (L+e 1)

-1

_ -x
is always less than e

5

Hence, replacing the limit yp by infinity increases the integral in

-y

Eq. (35) by a term proportional to e ¥

. The quantity yp is approxi-

mately equal to B EP(p), which is greater than ten for the temperatures

of interqpt here,

Hence, terms proportional to e

ﬂ

P can ve neglected,

and the limit yp can be replaced by infinity. The limits Y and Yo can

also be replaced by infinity since they are at least ten times larger

than .
4
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The effective masses and mowenta contairned in J can be expanded in

»*
& power series., For example, one can express m (El) in the form

mn*(El) - mn* LEF(n)J+ ;i xln LkT/EF(n)_r a8 .
N=

' Y.
Thus if we neglect small terms of order e p, the integral P can be

expressed as a power series in kT. Since kT/EF(p) is less than one-tenth
for neutron-star temperatures and densities of interest, we can obtain an
adequate approximation for P by considering just the first term in the

power series expansion of

B * 2
11-11 m (E,) m, (Ep) Pp(Ep) Py (W) .
We then obtain
o 8 4 *5 » 2
P=B(kT)"c " (m ) o Po(p) PF(e) I ’ . (36a)
where
Foax, | oax, | ax, | 7
I= dx dx dx dx ax
@ ‘oo 2.0 S ¥ (x x4 ) >
5 3 5 Xy -1
I ox Il <1 + e ) (%6b)
1=l 1=l
8
11,513
120, oﬂ ; (36¢)
. .
and ) m" - om” [EF(n)] , (364)
* *
m - om [Eg(p)] . (36e)
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Setting PF(p) and PF(e) equal to ¢ WF(e), we can write the

phase-space factor in the convenient form

*3 +* W( )3
m m e
-29 n P F 8
Pm2.6 %10 —— - Tq . (
n P mﬂc

The phase-space factor is, as expected from the heurlstic argument
given in Sec. III, proportional to TB; it is also proportional to the
product of the effective masses of the four nucleons involved, because the
number of single-nucleon states per unit energy is proportional to the
nucleon effective mass.

Although the integrations involved in P are accurate to within a
few per cent, the numerical value of P is difficult to estimate to much
better than a factor of two because of the uncertainties in the effective
masses and the electron Fermi energy. Using Eqs. (29) - (33) of paper I,
we estimate that the product (mn%/mn):5 (mp*/mp) is equal to 0.6 + 0.3.
The electron Fermi energy depends on B(n) - B(p), the difference between
the binding energies of the neutron and proton. This difference might
easily be as large as 20 MeV at nuclear density, but unfortunately no
reliable theoretical estimates of B(n) - B(p) are yet available, We

shall assume that B(n) - B(p) 1is much smaller than 70 MeV and use the

free-particle relation, Eq. (5c) of paper I, for the electron Fermi energy.

We then obtain a simple but appraximate expression for P,

P ~ 1.9 %1070 (p/pmml)2 '1'98 . B (

38)



C. Estimates of the Matrix Elements

l, Definitions

The dimensionless matrix elements of Eq. (24) can be written as

follows:
*

MV - 7\,(-3 f dS}: [008 ‘%' °r + A.(@)p(z)] [COB 5-5 + Agn(z)] ; (39)
>* .

M, - X“'s / dsg [cos k'er + Aip(;s)] [c03 ker + Agn('x;)] . (40)

The initial-state wave function [cos‘b T + Agn(z)J descrives the rela-
tive motion of two neutrons with total spin zero. The functions

[coa kK'er+ Agp(s)]A and [005 k'-r + Aip(z)} correspond to neutron-
proton pairs in states with spin zero and spin one, respectively. We
consider only states that are even under exchange of the positions of the
two nucleons because we have neglected nucleon-nucleon scﬁttering in
odd-parity states,

Our lack of detailed knowledge of the effects of strong interactions
mekes accurate calculation of MA and Mv difficult. In the following sub-
section we use a dimensional argument to guess the order of magnitude and
density dependence of the matrix elements. We then use two specific
models for the mucleon-nucleon collisions to obtain more detailed estimates

of ¥A and Mv.

2. Dimensional Estimate

The integrals over r in Eqs. (39) and (40) must yield a quantity
proportional to the cube of a length. Thus we can estimate Mv and MA by
considering the physical lengths that are involved. There are two lengths

associated with the nucleon-nucleon potential: the attractive potential



has a range of about Xﬂ and the core radius is about 0.4 Xﬂ. The

-1
relevant wave numbers K, k, and k' are all large fractions of P%(n) a o,

)-1/3

and & PF(n)'l 20k R (/e
Since all the lengths involved are nearly equal at nuclear density,
we expect IMAIE and IMV[Q to be of the order of unity at nuclear den-
sity. Furthermore; the effective range of A is probably determined
primarily by k, k', or Pg(n) 27t Thus we might expect M, and M, to be
proportional to Pb(n)-s, i.e., to decrease as p-l. in any event, we
expect MA and Mv to decrease slowly with increasing density, for moderate

densities.

3, Scattering Model

In this model, we assume that the function A in Eqs. (39) and (40)

is an outgoing scattered wave; that is, we assume that

&=z etn s, py(0) M /kr (41)
for kr >> 1, Equation (41) does not describe the wave function for the
region kr < 1, a region which contributes a large part (> one-half) of

the integrals Mv and MA' In order to estimate the wave function for

small radii, we must assume a specific form for the interaction poten-

tial. We adopt the separable potential suggested by Yamaguchi.zl The

corresponding s~wave scattering wave function 1s given by

cos ker + e1® sin & (eikr - e-ﬁr) (kr)“l

~

(42)

where

2 o -1
el® sin 8 - {-1 + £ [- % + % (}ai) + (22228) 71 (8% + ¥3) ]} . (43)
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The parameters A and B, which represent, respectively, the coupling
strength and range of the separable potential, can be determinci .‘rom
the singlet and triplet scattering data. The effective Hamiltonians
acting on the space parts of the singlet and triplet wave functions are
different. But the two singlet wave functions contained in Mv are eigen-
functions of the same Hamiltonian; since the two eigenfunctions corres=
pond to different nucleon energies, they are orthogonal, Thus the
free-scattering model implies that Mv equals zero.

We have computed M, using values of B and A that reproduce the
experimentsal phase shifts between 25 and 100 MeV. The resulting expres~-

sion for M, is camplicated, but, for p < Py it can be accurately

A ~ "nucl
appraximated as follows:

12~ 0.5 (o /)7 . (44)

nucl

Note that the model described above neglects all correlations

between the colliding nucleons and the other nucleons that are present.

L4, Nuclear Matter Calculation

In using the scattering model discussed above, we have neglected
the fact that the exclusion principle prohibits scattering into occupied
states. Nearly all the states that are energetically accessible to two
colliding nucleons are, in fact, occupled in a neutron star; hence there
is almost no free scattering. The wave function describing the relative
motion of two nucleons in a neutron star or in nuclear matter is a
symmetrized plane wave, except for some distortion for small internucleon
separations. This distortion iaydescribed by the functions A in Egqs. (39)

anrd (40). One can describe the collision between two particles most

2l -
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simply by using a two-particle Schrddinger equation. The effect of the
interactions between the two colliding particles and the other nucleons
can be represented approximately by replacing the free-particle masses by
the effective wasses., However, the Schridinger equation must also be
modified to take account of the fact that the states below the relevant
Fermi levels are largely occupied; the appropriate modified form of the
Schrédinger equation is the Bethe-Goldstone equation, which 1s often used
in nuclear-matter cv:mll.culations.20 In the Bethe-Goldstone equation, the
usual potential-energy term V(r) ¥(r) 1is replaced by qv(z) W(f), where
q is a projection operator that eliminates those Fourier camponents of
V(z) V( 5) that correspond to occupiled states. Since the operator qv(z)
is not hermitian, the solutions to the Bethe-Goldstone equation for
different energies are not necessarily orthogonal. Thus MV need not be
zero as it was in the scattering model of subsection 3.

We follow Gomes et g_}_.eo in assuming spin-independent forces, which
implies that MA and Mv are equal. However, Ann and Anp are not equal,
since the exclusion principle differentiates between neutrons and protons,

Using the fact that |k| is daifferent from |k'| to show that

fd3rcoa'§'-_§cos‘l_:_°r - 0 ’

we can rewrite Egs. (39) and (4O) in the form

My o= My ‘ (k5a)

- X;S f a°r [cos k'er Am(z) +co8 k+r Anp(z) + Anp(f) Ann(s):] . (sD)

The function Ann(f.) bhas no Fourier components corresponding to the

scattering of either neutron into an occupied state, i.e., Ann(r) has

~25~
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Do cacponents with wave mmber p for which (5K + pl < PF(n) h-l. Since
k' is approximately one-half X, (r) has no Fourier component with

wave nuzber + k', and
fdsrcoag'-sAnn(s) = 0 .

We follow Gomes et al., in assuming that the nucleon-nucleon
potentisl consists of an attractive square well and a hard core. The
long-range attractive well has little effect on the wave function for
densities comparable to pnucl; the distortion functions A are due almost
entirely to the hard core. We consider the case where the core radius, a,
is much less than ‘h[PF(n)]-l. The resulting low-density approximation
should be reasonably accurate up to densities about equal to nuclear
density. In the low-density limit, one caan make the following simplifi-
cations: first, we need only cansider s-waves; second, we can neglect the
last term in Eq. (45b) because the product Anp(z) Ann(s) is of second
order in PF(n) a; third, in computing Anp(z) we can neglect the
leaknge of the wave function inside the core as well as the changes in
the wave function's pormalization caused by the distortion terms A. One
can then use the Bethe-Goldstone equation to find the Fourier camponent
of Anp(s) that corresponds to the momentum X. In this way, one finds

that

N

-1 2
- [(um) (2 - %) X '3] . (46)

u

The values of k and k' are determined by kinematics and the exclu-

sion principle, We fourd in Sec. V-B that the particles involved in



.reactions (1) and (5) must be in a narrow band of states at the top of
their respective Ferml seas. Thus the momentum of each particle involved
in a reaction must be nearly equal to the Fermi mamentum for that particle.
The neutron Fermi momentum is large compared t0 the proton and electron
Fermi momenta; the neutrino momentum, which is of the order of kT/c, is
canpletely negligible. Hence the momentum Bi of the final neutron must
be approximately equal to the momentum in the initial state,‘gl + Dy Ir
we neglect the momenta of all particles except the neutrons, we find that
the three neutran momenta form an equilateral triangle with sides of
length P?(n). It follows that k 1s equal to 31/2 (211)'“1 P?(n) and k'
is equal to (211)"l Pf(n). Substituting these values of k and k' in

Eq. (46), using Eq. (Se) of paper I, and choosing the core radius a to be

4 x 20738 cn, we £ind that

1% = I l?

s 1.0 (°nuc1/°)u/3 . (47)

S5, Summary
The scattering model and the model based an the usual picture of
nuclear matter both predict that IMAId is af the order of unity near

~

nuclear denéity and that !MAId decreases with increasing density. The
relatively small difference between Eqs. (44) and (47), and the agreement
of both equations with a dimensional analysis, indicates that the value of
the total matrix element is not critically sensitive to the uncertainty in

our knowledge of the strong internucleom force.

27 =




D. Related Reactions

1, The Inverse Reaction

We have calculated go far only the rate of neutrino energy loss via
reaction (1). At the temperatures and densities for which reactions (1)
and (5) are the dominant means of ensuring chemical equilibrium in the
L-e-p system, the rates of reactions (1) and (5) must be equal in order
to preserve the equilibrium, We shall now show that the rates of neutrino
energy loss by the two reactions are in fact equal within the approximations
we bave used in calculating the rate of reaction (1).

For reaction (1), Eq. (21) provides an evaluation of
2 pins (£ |K] 1)!2;‘ this equation is accurate if the lepton momenta are
small compared to the neutron momenta. The expression for
2 pine (¢ lH| i)l2 for reaction (5) 1is identical to Eq. (21) if the
lepton momenta are again neglected. The nucleon matrix elements MA and
M, for reaction.(s) are the complex conjugates of M, and M, for reaction (1),
Furthermore one can easily show that Eq. (35) for the phase-space factor P
holds equally well for reactions (1) and (S). Thus, Eq. (22), which gives
the neutrino luminosity in terms of M, M,, and P, predicts the same rates

of energy loss for the direct and inverse reactions.

2. Muon Production

Muons are present in a neutron star if the electron Fermi energy is
greater than the muon rest energy m“c 518 muon neutrinos are then pro- ;
duced by reactions (2) and (6). The rate of reactions (2) and (6) can be
computed by the method used for reactions (1) and (S5). The only difference
in the r;;es of production of muon and electron neutrinos results from the
fact that the density of muon states at the top of the muon Fermi sea

differs from the density of electron states at the top of the electrom
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Permi sea by & factor F, where, for W,(e) greater than m .,

F = Py(u)/rp(e) . (k8)

Using the equilibrium relations (Eqs. (10) and (11) of paper I), we obtain
5 1/2
Foa (- [a ] . (49)

The ratio F is of course zero when EF(e) is less than mucz.
Using Eq. (Sc) of paper I to estimate W?(e), we £ind that

1/2

/p)h/31 for pP>180p 1 (50a)

F - [l - 235 (pnucl J

and F = O for p<1.8 Pruc (sov)

1 e
E. Numerical Expressions
We now combine the results of the last four subsections to obtain
convenient numerical expressions for the rate of energy loss by neutrino
emission. Substituting Eqs. (38) and (47) into Eq. (24), and multiplying
by 2(1 +F) to take account of reactions (2), (S), and (6), we £ind that

the rate of neutrino energy loss by the two-nucleon reactions is given by

Lﬁn - (lo20 erg em™ sec-l) (p/pn 2/3 Tge (1 +F) , (51)

ucl)

where F 1s given in Eq. (50).
The luminoeity of a mass MB of neutron-star matter with a wmiform

density p is given by the expression

Lﬁn ~ (6 % 10°0 erg sec™?) (MB/MO) ( /p)l/3 '1‘98 (L+F) |, (52)

pnucl
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‘where %D is the mass of the sun.22

Equations (51) and (52) give estimates of the neutrino luminosity
froa reacticas .avolving two nucleons. Two-nucleon reactions are ex, cted
to daminate the neutrino production as long as there are no quasi-free

piots present.

F. Cocamparison with Previous Work
Chiu and Salpeter' first suggested that reactions (1) and (5) might
contribute importantly to the cooling of neutron stars. They used a

dimensional analysis to obtaln the expression

-2.25
1% . (2 x 10% erg/sec) Tge [EF(n)/SO MeVJ (MB/Mo)

v

for the rate of energy 1oss by neutrinos produced in reactions (2) and (5).
The result given by Chiu and Salpeter has the correct temperature depen=-
dence, but 1t is typically two or three orders of magnitude smaller than
our best estimate (as given in Eq. (52)).

Finzfu'has performed a detailed calculation of the rate of reaction

(2) at a density of 1.6 o Although he did not explicitly calculate

ucl®
the rate of emergy loss by reaction (5), he correctly assumed it to be
equal to the peutrino luminosity arising from reaction (1). His treatment
of the matrix element differs from ours in several ways. First, he
neglected the effects of the exclusion principle on the relative motion of
two colliding nucleons. Second, be treated the strong nucleon-nucleon
interaction as a first-order perturbation; the nucleon scattering matrix
element was assumed to be equal t0 a constant, which was determined by

the requirement that the same first-order perturbation treatment yleld a

value of 3 X 10-26 cm2 for the scattering cross section for free nucleons.
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Third, he treated the nucleons and leptons as scalar particles (instead of
Fermions) in calculating the amplitude associated with the weak vertex.
Finzi's treatment of the phase-space factor P differs from ours In two
ways: first, a minor error in his integrations results in an extra factor
that 1s approximately equal to 2/3; second, he uses the free masses m and
mp instead of effective masses mn*' and mp* to describe the density of
single-paxrticle states, Finzl gave the following expression for the

luminogity of 0.6 M, of neutron star matter at 1.6 Prucl

L F

. = (8.83 X 10°7 erg/sec) Tg8 .

This result differs from the luminosity predicted by Eq. (52) for the same
mags and density by about a factor of one-fifth (if we set F equal to zero).
The disagreement between the two answers is small compared to the obvious
uncertainties in either approach., The closeness of the two results for the
rate of energy loss arises partly from the fact that the matrix element is,
as we mentioned in Sec. V-C, relatively insensltive to the details of the
model used to calculate it.

Ellis12 has recently reported & similar calculation of the rate of
energy loss by reactions (1) and (5). Following Finzi, he employed
secand-order perturbation theory to estimate the transition amplitude,
using the known nucleon-nuclen scattering data to determine the coupling
at the strong vertex; he also neglected the effects of the surrounding
neutrons on the relative motion of the colliding nucleons. Unlike Finzi,
Ellis treated the nucleons and leptons as fermions, and he performed the
calculation for a range of densities. Altnough he did treat the nucleons
relativistically, he did not consider the protons to be degenerate, despite

the fact that EF(p)/kT .18 of the arder of 50 for most temperatures and



densities expected in neutron stars. Ellis performed part of the inte-
gration over phase space by a Monte Carlo technique; he gave the following
formula, which accurately represents his numerical results:

v

-1.9
LE o (6 x10°° erg/sec) [EF(n)/so MeV] (4 /M) T98'7 .

The peculiar temperature dependence is due primarily to the.fact that he
assuzed that the protons were non-degenerate. The above relation does not
differ from that obtained by Finzl or by us by more than a factor of ten
in the most interesting domains of temperature and density.

We have extended and refined the work of previous authors in several
respecfs. First, the rate of energy loss by muon neutrinos and the lumino-
sity due to the inverse processes (reactions LS) and (6)) have been
explicitly calculated in the present work. Second, we have attempted to
nodify the single-particle plcture to take account of strong interactionms.
In particular, we have used the methods developed for nuclear-matter calcu-
lations to estimate the density of single-particle levels (as expressed by
the effective masses) and to treat the nucleon-nucleon scattering in a
manner consistent wlth the exclusion principle., We have also been able to
calculate the phase-space factor more accurately by expressing it in a form

that permits accurate analytic evaluatiom.

VI. PICN COOLING
A. General Discussion
In this section we calculate the rates of several neutrino-producing
reactions that will occur if quasi-free pions are present in neutron matter.

We showed in Sec. V of paper I that quasi-free pions, if they are present
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at all in a neutron star, must be highly degenerate; that is, nearly all
the plons must be in the lowest-energy single-particle state. The momen=-
tum Ex and energy ‘”,( of this lowest single-particle state are noﬁ

¥nown, The reaction rate fortunately does not depend sensitively on P>

~

and we can assume that pﬂ is zero without meking a serious errax. The

-~

energy a; can be written
- 2 ‘
® - B(n ) + m ¢ , (53)

where 3B(x ), the pion bindin; energy, was defined in Sec. III of paper I.

The most important neutrino-producing processes that involve pioms
are reacticns (3), (4), (7), and (8). We shall first derive an expression
for the rate of energy loss by reaction (3), and then modify the formula to
take account of other reactioms.

The rate of energy loss per pion by reaction (3) is given by

3 o ooxndl 3 fadh a%htadn o®n s e(E, -E)
v ~1 7 ~1 ~a o~ £ i
apins v
- - - 2
E_ l((n:e sv) lei (n,n ) "")I . (sk)

Vv

The notation used in Eq. (54) is similar to that used in Eq. (18): the

differentials d?gl, dsgl', dsge, and dsn_ refer to the initial neutronm,

the £inal neutron, the electron, and the a;tineutrino, respectively. The
statistical factor S is identical to that defined in Eq. (18c), except that
it only includes factors for the two neutrons and the electron (all pions ’
are assumed to be in the lowest energy state). The initial state vector
|(n,x") +) 45 an eigenstate of the strong Hamiltonian; the incoming part

of |(n,x”) +) corresponds to & neutron with momentum P, and a pion with



mozentum . The final state vector |(n,e ,v)) is a product of momen=
tum eigenstates representing a neutron (with momentum Bl)’ an electron
(with mamentum Ee) , and a neutrino (with momentum E‘;) .

We again find it convenient to separate the neutrino luminosity
into a dimensionless phase-space factor, a dimensionless matrix element,
and a constant factor. The matrix element is nearly constant over those
regions of phase space where the statistical factor 8 is non-negligible.
Thus we can remove the matrix element from the integral and write the

neutrino luminosity in the form
b =1 5 6 ’
LS,S) - PM2[62 (20)* 2™ R ] , (ssa)

where

5 3

-12 ~9 3 - - 3 -
P = (2x) (mxc) I Dy &°py" ap d g_v_ G(Ef Ei) 8 (ff 51) s E; ,
(55v)
a as(gf -2) = ¢ 2 gt xx'z’ (2x 1)
L - 2
X z l((n:e ;V) !le (n:" ) "')l > (550)

spinsg

and g and f are the initial and 7inal momenta, respectively.

In the following sections, we estimate the values of P and M2,
exmploying arguments that are analogous to those we have previously used
to calculate the nuclem-nucleon cooling rate., We shall see, however,
that our knowledge of the relevant matrix elements 1s much less accurate

for piondc cooling than it is for nucleon-nucleon cooling.




B. The Phase-Space Factor

As in the case of nucleon-nucleon cooling, we describe the density
of availsble initial and final states by the phase-space factor P, which,
for reaction (3), is defined in Eq. (55b). The integrand in Eq. (55b) is
concentrated in the small "important region" of phase space where the
energy of each particle is within a few kT of its Fermi energy. Just as
in Sec. V-B, we neglect the contribution to the integral P from certain
regions far frocm the "important region”; in particular, we consider only

the parts of phase space satisfying the following inequalities:

- $ - - .
Pt R+ R "R <P <p P_ "R tP (56a)
P, > p_; +D, . (56v)
The phase-space factor for reaction (3) can be evaluated by the
rethods used to calculate P for reaction (1). We use inequalities (56)
to evezluate the angular integral A, where
- ) T -
A fdnlfdn;f(me / d'Ql 8 (Bl +Ex sl Pe 2';) ¢ (57)
The result is
3 ' -1
A = 321 (p,' B, P;) . (58)
Substituting Bq. (58) into Bq. (55b) and using the energy delta
Tunction to integrate over the neutrino momentum yields
® @ ® 3
-P=C J pyapy J py'ap' [ p, ap, (E))” S ’ (59a)
o o P
m
vhere C = 277 g% V2 , (59b)
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- l -
E, = E; +® -F W, ’ (59¢)

and P, is defined such that E o is equal to zero when P, equals Ppe
As in Sec. V-B, it is convenient to change varlables: we define
*
(En), X, X5, and X, by Eqs. (33v), (34a), (34b), and (3k4c) respec-
tively. We then use the conditions of chemical equilibrium (Eqs. (11b) and

(15) of paper I) to obtain

n Ve

6 -2 * "y ds
=
P=C (kT) ¢ f m (B)) axy I By (2 ) 2 “(x;+x,) ®

n

x[wx-k'rxs] (x + X, +x) S ’ (60)

vhere y and y, were defined in Egs. (35b) and (35¢). To lowest order in
[kT/EF(n)] we can set the effective masses equal to their value at the

neutron Fermi energy and neglect x, kKT relative to wﬂ. Replacing the

: -pEg(n)

limits Y and Yo by infinity causes errors of the order of e and

-BEL(n)

ﬁEF(e) are both much greater than 100, We then obtain the following

, respectively; these errors can be neglected since BEF(n) and

expression for the phase-gpace factor:

6
Px2l “-9 (m’\/mxca) (k’l‘/mﬂca) (mn%/m“)2 I , (61a)
where
-1
o © foo 3 3 xi)
I~ -{)o ax, -{zo ax,, -(x{-e-oca) dx, (xl+x2+x3) 1121’ (l +e , (61v)
- (457/5080) «° . (61c)



The phase-space factor is proportional to Tﬁ, ag expected from the
heuristic arguzent in Sec. II. The factor P for reaction (3) depends on
the density only through the effective mass mn* and the piom ground-state'
energj @ . Referring to the results of Sec. IV-B of paper I, we assume
that the neutron effective mass is 1.0 m . We also assume that the plon
binding energy B(x ) is small campared to mﬁca. Then the pion phase-

space factor can be conveniently expressed in the form

P = 5.6%10°2 'r96 . (62)
C. Matrix Element
We present several arguments that can, in the absence of a detailed
theory of strong interactions, be used to obtein crude estimates of the

patrix elements for reaction (3).

1. Dimensional Argument

The physical lengths involved in the matrix element M are the
1

?

-1 -
following: =c as'l, f(m c)-l, A(m c)-l, h [P (e)] , ke [E J
-1 x e n ¥ "
h [PF(n)] , and the range of the piom-nucleon potential. The range of
the pion-nucleon potential is of the order of the scale length Kﬂ. We
asgume that the pion binding energy B(x ) 4s not large compared to mﬁcg;
-2

then “ec a%-l and 1 [PF(e)] are also of the order of,ﬁﬂ.

There remain four relevant lengths that are not approximately equal

- -1
to Xﬁ: fic B_ l, h(mec) l, -ﬁ(mnc) l, and [P%(n)] . The neutrino
v

energy E_ enters the matrix element only through the combinations
14

E, + E_"; since E_ is much smaller than E , it follows that M 1is
v v -1
essentially independent of H%ic [E_] . The momentum and energy transferred
v

to the leptons @o not depend strongly on m,, © , OF PF(n), because of the

37



equilibrium relations that obtain (cf. paper I, Eq. (13)). Hence these
three quantities do not contribute strongly to the energy denominators
correspcading to the importent virtual states (the virtual states involved
in Fig. 1 for example). The amplitudes at the vertices are not strongly
dependent on PF(n); conseqpentlyi the entire matrix element M is approxi-
mately independent of 4 [PF(n)] . We shall see later that the amplitude
at the weak vertex cen, for some diagrams, be proportional to the electron
mass, and the contributions from these dlagrams are consequently inhibited
by & factor of (me/mﬂ). The contributions from the dominant diagrams,
however, are essentially independent of 'ﬁ(mec)-l.' The effect of the
nuclecn mass on the matrix elemxent is more subtle; the masses of the
hadrons and the coupling constants characterizing their interactions are
connected in a camplicated way. The ratio (Xﬂ/ﬁh) or mn/mx, is typical
of the dimensionless quantities erising in strong interaction calculationms.

Our dimensional reasoning can only suggest that M should be of the order of

unity, within perhaps a couple of factors of mn/m“.

2. Pilon Decay

We first estimate the rate of reaction (3) by considering the dia-
gran shown in Fig. le; the plon 1is assumed 10 beta decay during a collision
with a neutron. Tne diagrem suggests Tactoring the matrix element of Hw

as follows:

((a,e”,) [E | (m,2) #) = (e (p) v (p) 8| x (p, + p))
. v v

) X (a(p") n(p,+2) | (a,d) ) , (63
\4



where e(pe), for exsmple, represents an electron state with four-momentum
Pg- This factorization can be Justified formally by writing an explicit
expression for {e,n,v IHW{ (n,7 ) +#) in terms of & double integral over
the neutron and pion coordinates.

The weak Hamlltonian is the product of a leptonic weak current

1/2 2-1/1:,

G ve 7o (l+75) v and a pionic weak current Qa. The current Qu

v
1s proporticmal to the four momentum (pe + p_)a of the decaying piom,

v
since the four-mcmentum is the only vector assoclated with the spinless
particle. Including all the necessary normalization factors, we can write

the required matrix element as follows:

(e(Pe) -V_(p__) lel x(pe + p__)) = %G K [(pe + P_)2] ‘h-3/2 m“c
v v v

r -1/2 _
X |, a);_ (w, + w;) n] (p, + P;)a u,(p,) 74 (1+7g) v;(-p;) R

(64)

v
is a dimensionless scalar that indicates the relative strength of the

where W snd ® ¢ sare the muon and neutrino energies and Id; (pe + p_)‘?]
v

pionic part of the weak current. The value of K for a pion on the mass
shell can be determined empirically from the known half life T“(%) of
the pion at rest:

2,2 7 4 2
IK(-mﬂ )| =6x(fn 2n' ¢ 6

N ' -2 -1
m_ 5 e 2 (1 - mue/m’ta) [Tx(%)] (65)

~ 0.88 . (66)

We shall assume Zor simplicity that

-3G=-



2 2
I (2, + 22 )1 = 1K=l (672)

2
= [x(-u ®) (67)

2
- x| ) (67¢)

It is easy to establish the dirensicnal forms of the overlap matrix
element (n(pl') n(pe +p )] (n,x") 4}, which we abbreviate by (@ [¥).
The matrix element 1nvolv:s two integrals, one over the center-of-mass
coordinates and one over the relative position of the nucleon and picm.
Tne integration over the center-oif-mass coordinate ylelds a momentum delta
function; the integration over the relatlive position yields an effective
overlap voluzme, which must be ol the order of Xxs. Since the wave func~

tions are normelized in & volume Q, we £ind that
[(B1w12 = 3% 5 ° 2™ (2m)® 8%z, - B)) , (68)

where B is expected to be of the order of wnity. Substituting Eqs. (64),
(67), end (68) in Eq. (5S5c), one obtains, arter summing over nucleon and

ieptons spins,

e -8 K2 m® ® (o m) e e (g0 L (69)
1 4 v

The integrand of the phase space factor is independent of P_ to first
~v
order in kT; hence we can average over the direction of p_ in Eq. (68).
~v
Substituting the value of X from Eq. (66) in Eq. (69), we then find that

2 2 2 -1 :
- ¥ = 0.9 2% ¢ (0 m) . (10)

The factor B is a dimensionless number characterizing the strong pion-
nucleca interaction. It should be equal to unity within perhaps a couple
of powers of (mn/mx)'

~0-



3., Born Approximatlion for Pion Decay

We now use a gpecific model to treat the pion-nuclecn interaction.

We assume an interaction Eamiltonlan given by23

B, = 1@V X7V 8 ’ (71a)

where g = 14 (71v)

and T and g are vectors in the isotopic spin spaces of the nﬁcleon and piom,
respectively. We treat the strong interaction as if it were a small per-
turbation and consider Just the dlagram shown in Fig. 1b. The assumption
that the strong interaction is a small perturbation 1s of course not valid
because of the large-value of g, but we use the first-qrder treatment in
the hope that it will provide scme insight into the relevant physical quan~
tities that enter the problem and perhaps serve a&s & gulde in the estimation
of the factor B in Eq. (70).

The Feynman rules permit one to calculate easily the amplitude corres-
ponding to the diagram of Fig. lb. We use the free-particle propagators
for the piocn and nucleon, make the non-relativistic appraximation for the
nuclecns, neglect m ccapared to m s end average over the directions of the

neutrino momentum. The result is

ol R e m)? - 2®) (72a)

or ¥ o~ 360 (n /n)? , (720)
waich co?responds to

B ~ 21 . (72¢)

41-




from Fig. le. Tor cxample, 'ne ccatrivusion from Fig. 1b would have
Veen lerge ccmpared to that from Fig. lc, bhad 1% not been for the factor
(me/mﬁ)2, which resulicd fram the form of the weak Hamiltonlan. Tne con-
siont in Bq. (728) is large becsuse it cemicips four factors of g, while
the constant in Bq. (75) containe only two.

The estimates of the motrix element M? given in sub-secticns (1) to

{4) con be summarized by stating that 1= is expected to be of the order of

ten but is umcertain by ome or two powers of ten.

D. Related Reactiocns
Mucns are expocted 0 te preseat in neutron stars that contain

pions iff & is greatcr than muc2 (ef. Bq. (11b) and (15) of paper I).
VWhen muons are present, reaction (4) coatributes to the rate of neutrino
procduction. Tae phase space fzctor for reaction (4) is the same as for
reaction (3) if, as expected, w - m“ce iz much larger than KT. The
matrix element M is, oa the other hard, not the same for decays producing
muons end electrcas. In Sec., VI-C we found that diagrams such as Fig. 1lc
that iavolve the decay of & neutron into a protom, electron, and anti-
seutrino were much more important then diagramé such as Figs. la and 1b
that involve the decay of & viriual % into an e and & ;;. However, the
pilca-decay processcs tnat are inhibitcd by a factor 6f (me/mﬂ)2 in the
case of decay into e and ;é ere only inhibited by a factor of (m“/m.ﬁ)2

in the case of decay into & u and ;#. Thus diagrams such as Figs. la and

1b may contribute importently to the rate of production of muon neutrinos.

_~ i, i JTNN. X -
of the sexme order of moznitude, ond,



£p in the case ¢f the nuclecn-nuclecn reactions, the rate of energy

cas (7) and (8)) can be proved equal

(2
b

lozs by the inverse proccoscs {react

%0 the rate of encryy lozs by the forward processes (reactioms (3) and (4)).

m

E. userical Expressicas

The rate of energy loss by neutrinos produced in pion reactlians can
be cbtaincd by substituting values of ¥ end P in Eq. (S5a). In particular,
we use Eg. (62) for the phasc space factor end set 0 equal to ten. Multi-

Plying by four to account for the mucuic decay (reaction (4)) and the inverse

processes (reaction (7) and (8)), we find the expressiocn

.7n L .=l

L, SEERTY erz/sec (76)
Tor the rate of energy loss per pion. The neutrino luminosity of a mass

D a (10% erg/sec) 7.0 (n_fo.) (4 /1) , (77)

N

where nﬂ/n. is Wie ratio of ithe nuzber density of quasi-free pions to the
nuzber densliy of barycans. Bquations (76) arnd (77) are provably accurate
16 within a factor of scaething like one-hundred. The result given in

Ec¢. (77) is evbout twice the rate indicated by the beuristic discussion in

- . . .2k
Secc. II, end is almost identical to the result of our previous calculation,
-2

We ncte that the energy loss by the pioaic process is of the order of 107 T9

1

Csg by the pucleca-nuclediy processes if a significant

w
| &3]

tizecg the

ergy

o,

nuwuver of guasi-Tree ploms are present.

A

~d -
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VII. COCLING TDES 45D CREELVABILITY

Cezrerctuwre Distribution

’_,ﬁ

4,
Thae imizricr ¢of a neutron star is nearly isotlcrmal bpecause of the
niga conductivity o thoe deopzacrate elecirens. The effective surface
& m Fral - L - . N SR had e ] 1‘5 -3 .
vemperature T 1o, on tae basls o {ae mcdels of Tsuruta, of the order
o 10 tizes the central temperature T, bub the temperature drop fram
£
oceurs olmost entirely in a thin curfece layer of noa-degenerate
ard partially degenerate matter. The energy 10ss by neubrino emission
depends On the incerior temperature T, bdubt the rate at waich photons are
frca the swiace is governed by the effective swrface temperature T%.
The therzal energy U ¢f & neuircs star is approximately equal to the

eoicrygy O wue therzal exciinulons in the ceutron gas if there are no gaps

a
3

that
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2o/ )72/ (¥ /i) ; (78)

: . g0
waere T, iz the interior tenperature of the star in uaits of 10° K.

w2 G3gulle thet the ster radiates pnctons frcem its surface like a
. - 25
vicck bedy; the detailed ctmospheric calculaticas of Orszag indicate

that the blach body acsumpticn is a fairly accuwraic overall approximation.

-

- . L 30
L, = {7 X 107" erg sec ) Te? Rip ’ (79)

. , 70 -
vhere 7T .~ 1is the effective surdace temperature in wnits of 10° X, and

Sy 49 the radlus of the star in wiits of 10 Im. For convenience, we
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~5. (69), (70), and (72) result from

. ~ 2
The factors of (m /o )T i Z
LE 1
cux assuzvtion that the lepions are produced the decay of a %t » A

similar Taetor ceccurs, for the same reasen, in the well-known and experis

wentally verified prediction of the V-4 theory for the decay of a {ree

picn in the nexs section wo ccasider the production of an electroan and
& neutrino by the decay of & neutron (Fig. lc) ard £ind that the corres-

perding matrix elexzent 1s not inhibited by Lactors of me/m£.

L, ¥outrcn Deeay

The diagram showua in Tig. lc is the simplest one in which reaction
(3) takcs place by neutrom decay. At the strong vertex, we use the
Tamiltonlen given in 2q. (71}, but the weal vertex now involves the

ucleca curwrent., We assuis & pure V-A Jorzm
7 (Le75) V,, (73)

70r the weak fomiltonian. The coefficient of the axial vector part of

the nuclecn current has, For simplicivy, becu set equal to unity.

%)
s
(e
[ol)

izmensionless Tactor M can ve calcuwlated using Feynman rules.

Yoking the seme apprexizations as iln sub-scetica (3), we find that

i~ 2 2

w2 (afa) (74)
"

[ ° (75)

We note that the contribution t0 M frax the dlagrem of Fig. lc

=~ >

containa nG ractowrs OF mc/m« and is comsequently larger than the con-

- Piy
tributicds froz the diegrans lnvolving plon decay. The volue of }F given
in Zg. {78} is act relimble, aowover, tocouse of cwr use of perturbation

. n vt L2 . 2
taeCry. Terws of higher order in g zmay be lorpcr than the coatribution

-
%=




4
&3

. (6% 10% erg see™) ifir) (o /WM 2B (em) L, (s2)

<

7~ -
.xn RS I\ ser 6
e (107 erg see ) M/ )y (a /o) T s {(717)
v 30 %0 9
c voere n_ end n are the punber densities of plons end baryons, respectively;
P1S

ribution from muonic decays, was

¢t

ot o hnl S A TR - Ny - .
Lie feacoor I, wnich represents the con

Tne rate oOf chonge of the interior teuperature con easily be camputed

{i2 the ratlo of imiterior to surface temperature is !mown) using the relation

¢ jars WD '
- = =L =L - (€0)
o 7 14

and Bg. (78). If queci-lrec pions wwe prescat in significent numbers, the

pica-aucleon cooling reactions are dGuinant, and the time required for the

interior 1o coOl Prom oo inltial vempereiure i) 1o & Linal temperature

- LN 4 v 'rs—7 -2 3 e 4 -l" 'l&ﬁ
2o (pieas) = (8 X 107" yx) {ny/n) (o/p 1) / |Te(2) ™ - (1)) . (ay)
Tae iluainosity e is zero 1T no quasi-free picns are present.

faen we coa solve Zas. {(78), (79), (52), ani (80), Pinding that the time

rTeguired Por & stor's imtorior vo cool Trexn iy to (L) 4s gilven by

(82v)

) (820)



%, = baf{ul , (82d)
1 9 o
- -2
end X, = b« Tcif)j . (82e)
I — -

We have soouzed fhat the tomperature parameter Q, defined by |

-

{7) = 107 2/7, (82a)
or {1 = Ty/ Ty R (83b) |
is approximately constant for T between T{(i) and T(L). |

1
7t is clear frem Zq. (82) that the cooling rate depends strongly

n the paraasher ¢, wihich must be determined from theoretical models of

@]

acutron stars. We wish to stress that « is, in fact, the only quantity

derived froa neutron-ster models that cnters at &ll sensitively into the |
theoretical vfea*cuiora o2 the cooling rates. It is primarily through

that the models affect The question of the ovservability of neutron stars,

and fuiure models calculations should therefore attempt to establish the

wcertainty In  o{T) due to, for example, uncertaintles in the equation

We have ccaputed cooling times for a typical neutron staxr, with the
results chown in Fig. 2. The curves represent ccoling by the pilon-nucleon
reaction (Bq. (81)), by the nucleca-pucleon processes, by photons radiating
{rom the suwrlace, and by the nucleon-~nucleon process and photon cooling
operating together {Bq. (82)). ¥e considered & star with average density
p_ - ond macs M. Tae quantity (T} is & slowly varying function of

temperattre; we chose values ¢f (T in agrecment with a neutron-star

T -



C. OCbsirvapl r o7 nheutron Stars

b_.l
((4

The provobil

o

h

b

7 of ever cbserving a noutren star deperds strongly
on the rates at which such sters cool. A star ccataining quasi-Lree

plons would emit deiectable x-rays for no morc than a few days, and the

»

rrobobilisy of observing it would be small, A star that cools only by

tne nucleon-nucleon and photcn procesces would be detectable for a longer

time (cf. Fig. 2).
5
Ve have previously pointed oul that the rate of decrease of the

f\)

Do

x~roy intensity frcm e neutrom star cculd be used as an observoiional test
o2 thoories of neutrcn-star cooling; we have given a coavenient formula
for mzking the cppropriate ohservavionnl ccmparisona, should a neutron
swar ever be Giscoverci.

We now cocsider the £iux of photcuas that would be produced at a

distence r by & neutlroa ster with elfective temperature Te' The flux @

photons with wavelengths lcss then K is given approximately by

, -2 -1, . 2 -2 5 0.3 1.2 . =X
Qs (O ca © gee 7 R, (7 /3 x 10° °% (Zx"+x+1)e” ,
10 Txpe e 2
4
(&ka)
viera R, is the stellar redive inm welits 10 Im, 1, is the distance
10 £PC

~ cm), and x is defined as

e ) - o
Zollows:

Approximately teu u-ray scurces nuove been Idenivified by Giaccond

, I . 2,3 . & '
o Bowyer et nl.,?’” ard Clark ¢t col. These sources are céuncen-

— it e ——

-+

b

£
C

wated nzar the galoctic plone; cnd about held of them arc loczted in the

~E -



the center of the golioxy. The weoXest source detected by

O

Bowyer et gl. produced & mzasurced fiux of 0.7 c:m“2 sec-l, snd, because
of ebsorption in the earth's atmosphere and in the counter itself, the
choervaed x-rays aust heve been concenviated in the wavelength range from
1.3 A to 8 2; sinceg the sun 1s cpproxizately 8 kiloparsecs from the

clactic center, we couiclude frcm Eq. (&%) that the effective temperature

>

of en obrerved source located et the g2lactic center must be greater than

1 o, - . .
2 X 10 K, 1f ihe source is no lsrger than e neutron star, Comparison

o 70
with Fig. 2 indicates that & reutron stor with & tamperature of 2 X 10 K

-

woald have €0 ve less nhon a Guy old. ine x-ray sources located in the

Cirection of the galactic centcr have boen ovserved several times in the
B 1)3)‘17 s e o - f N
100 LW years, and the fiux Irem these sources has not changed,

I3

5 (about & factor of two or three).

.

o P . ISR i JUR T
LEACE W& ClacLiiiae THaT ThRe 4furess in whe duge

ction of the galectic center
are almost certelnly not neutron stars. )

The strongest x-ray sowrce appears 10 be in the direction of Scorpius.
Ye have used Eg. (84) to calculute the distance &t which a meutron star with
a given swuriace temperature couwid produce the flux observed fram the Scorpius
source; this distance is caiculated for varicus surface temperatures. The
correnponiing cooling times computed froz Eg. (82) are shown in £he third
colwm of Table II, In computing the second column of Table II, we assumed
-that oll the cbserved pnoicns hed wavelengths less than 8 2; we also assumed
that the neutron star hod o radius of 10 km., It has been suggested that the
Scorplus scurce muy be caly of the order of 30 parsecs from the sun. Accor-

-

aiag to Tuble Ii, a distance ¢ 30 parsecs corresponds to a surface



-

<

temporelure of eboul 3 .0 107 A and to a reasonable cooling time of

. 6 o

- 3 - R R < q
approximately 107 yr. However, & block-bedy at 3 X 107 'K would nct

-

. . T ¢ an - o Q
rroduce newrly eaough redictlon with wovelcongth lcss than 2 A ©O be con-

vistent with the spectral moasuremenis recently performed on the Scorpilus

. 17
gource by Glacconl et ol,
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AFFEIDIX
Szetions V and VI are dovoted $0 the calculation of the rates of
reuirino lese by reretions (1) - (38); in this appendix, we explain why
we expect reections (1) - (8) to dominate the pcutrino production if ¢
nuclzen gas has & coatinuous excitation spectrum. In the following para-

graphs, we consider verious typec of reactions and show that thelr

)

contributions to the neutrino producticn is small compared to the contri-

s

outicns fron rezctions (1) - (8).
We First ccnsider reacticns that do not involve either electro

marmetic interactions or quasi-free picns. The rate of ordinary neutron

n o~ pie + v (AL)

reuwction (1). As explained in
Sec. V-B, the condition of chexzical ecuilibrium and conservation of energy

~

imply that the rates of processes involving only neutrons, protons, elec-

U

trons, cnd neulrinos are dawinated by reactions in walch the neutrons,

rrotons, wend elcctrons concerned have ernergles near thelr respective

Terml enorgles, ond the neublrinos produced hinve energles of the order of

L)

LY,  DBub momentum cannot be couserved in reaction {(Al) if p_ 15 near

n
2.(u), Py, i3 necr Py{p), P, 15 uear P (e), and p_ 1s of the order
-2 v
of .Te 7, occauvse
P(a) - 2(p) - 2 (c) > bret
n) - F(p) - 2 {e) uTe . .
-~ &

s / - - -
Congeguuutly, reaction {41) must involve the euission of electrons end
protcns with morenin czell cooparcd to their Ferml mements, and the

TrOhehil s AR
4

Drovebility of finding such low-onergy ctaltes uncccupled is of the order



is extrernely smnlil., Conservation of momens-

[

| o - S
L= n?(ui/i’:\ , wanich

fied i the dccaying poubron is allowcd to collide with

Heocbions thol involve large nusbers of particles are slow because

4

caly a soall fracticn (of the order of AT/EF(B)) of the particles of a

given cpecies ere neur encugh 10 their Termi level {0 scatter into

n+n+0 = 2+D¥PpFre FV (A2)
. - . ’ . N I~
iz plower than reacticn (1) by a fector ol the order of {RT/E?(D)J
A reaction thaet, like
e wn+n o nEpEYV , (43)

inivolvesa an incident positron, produces few neutrinos because the concen-

gt

-
“ration of positrons is proporticnal to  exp | - EF(e)/ij . Positron-

producing reacticns like
L+PpP - A+nre +V (AW)

are slowed by the same Jfactor of  exp ;- EF(G /Kl , because the number

of neusrcn-protda palrs with enough enerzy 1O produce two neutrons in

unoccuprd states is proporiicmel to exp | - Ev(e)/kT] .
h - &

¢ ; . "

Applying the ergunents of the iast few | wragraohs to all cf the
obv_.cus nreutrino-producing processes that do not involve either gquasi-free

’

ticns, we fiud that none of these pro-

-

cesses are Tacter then reactions (1), (2), (35), and (6).
3T weer Aot o e etiorns nct 4w l l,,
Je now oensluer resciions thaot do act involve pions, out 4o involve
electrezagaetic imiterseticas., sactons proposubting through a neutron star

R P Fde e 2T e P U N S I PN ] T e N
intoroc with the chzrged pariticles in Lho stellnr medlum, Creation of



¢

PR - At e A B IR LAY
one’ of these cuasi-free puctons (ususlly called "plasmons’ ) requires an

enceryy grecter thon Gw_, where R is the plnema freguency in the

medium. Ceonseguently, the rate o o rzection such &as

Y - v+ V , (A5)
“aw /KT
wnich involves cne externzl plasmon i3 proportional to e . Rates

, . . . “ 3 0
¢ such reacticns ere small Tor temperatures less than 10 K Dbecause

, ‘ . 27
TLw_ is of the order of 5 MeV &% neutron-sici densities.
o

neactlons involving mere than cne ncutrino are generally slow becuuse

of the small asount of phase space avaiisblie 1o such processes, The amount
of pnnse space availeble 1O & noeuitrino with energy less than kT 1s propor-

% B e ™ 1 - e P T R )
JT« Ccasequently, the roue of the reaction

D+ i = Dre + V. o+ s (46)

- 2
order of |xT/E.(n)] .
[ & -
¥ore deteiled work on pocecasses invoiving elcctromagnetic inter-

28,29 e, -
bul we have not yet found any such

sctions is now in progress,
procecses that are more iamportant than reaction (1).

Turning vo reactions involving quasi-free pions, we can use the
arguments prescated in the last lTew paragrapns €0 show that the following
NP e > ] o e D e ~ 3 Yy o e 2y = i z 7 .
types of pion reactions exe slower than reactions (3), (4), (7), and (8):

the frce decay of the pion (x =u + VvV ), rcactions involving large
H .

nusbers o ferizicas, positroa proczsses, and pilonile reactions involving

Py

ot
e
O
b3

e - . [T P a mmmin e
LOCe Ttaan L2 neutrind, A8 TTLC
-

%o+ N - % P +V B (AT)
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however, mignt be faster than rezcticns {3), (&), (7}, and (8) if the
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ig. i Severcsl Teyoman diagrams £or the reaction n+x =n' +e + ve.
FiE. 21 Cool g tinmes calculzted for o typlesl neutron star. The curves

noxrked mn and nn were calculgved assuaing neutrino loss by the
picu-nucdeoa arnd nuclecn-nucleon reactions, respectively, The
curve 7y represents & star ccoiing by roadistion froa the surface
caly, end the curve nn + 7 gives the cooling time of a star

enitling peutrinos frow its iuterior by the nucleon-nucleon

Frocesscs end rodiating photoas frou its swlace.
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